
Evolution de l'état calcique

1. Définition de l'état calcique d'un sol

- La notion d'état calcique d'un sol fait référence à sa **teneur** en calcaire mais également à la **répartition de ces différentes catégories dans le stock total**. Ce calcaire est présent sous forme de cailloux, graviers, sables, limons.
- Les paramètres utilisés pour caractériser l'état calcique des sols sont les suivants :
 - ✓ calcaire total = ensemble des formes contenant le calcium dans le sol ;
 - ✓ calcaire actif = fraction la plus fine du calcaire ayant une action sur les propriétés et sur le pH du sol ;
 - ✓ calcium échangeable = calcium lixiviable (lessivable) et absorbable par les plantes.

2. Dynamique du calcium dans le sol

① Le calcium du sol **provient de la forme solide du carbonate de calcium** (CaCO₃) de la **roche mère** ainsi que des **apports effectués** en cas de chaulage.

En présence de gaz carbonique et d'eau, le carbonate de Ca²⁺ s'altère en donnant du bicarbonate de Ca²⁺, 100 fois plus soluble, qui se dissocie selon la réaction suivante :

$$CaCO_3 + CO_2 + H_2O$$
) \longrightarrow $[Ca(CO_3)_2]^{2-} + 2 H^+$ \longrightarrow $Ca^{2+} + 2(CO_3H)^{-}$

Dans le sol, la présence de gaz carbonique déplace les équilibres de gauche à droite entraînant la libération d'ions Ca²⁺. La vitesse d'altération du carbonate dépend de l'importance de la surface de contact des particules avec la solution du sol, donc de leur taille. La fraction de CaCO₃ qui s'altère facilement constitue le calcaire actif (②).

Page 1

Source : cours Laurent DUHAL -INFOMA

D'autres composés calciques comme les sulfates ($CaSO_4$), les nitrates ($Ca(NO_3)_2$), libèrent des ions Ca^{2+} en se dissolvant.

- ③ Le calcaire actif s'altère au contact du CO_2 pour libérer des ions Ca^{2+} par dissolution dans la solution du sol $(CaCO_3 + CO_2 + H_2O \leftrightarrow Ca^{2+} + 2 CO_3H)$.
- 4 Une partie des ions Ca²⁺ libérés sont adsorbés sur le complexe adsorbant tandis qu'une autre partie reste présente dans la solution du sol.
- ⑤ Les ions Ca2+ s'échangent entre le complexe et la solution du sol et un équilibre s'instaure.

Les pertes de calcium ont lieu soit par **lixiviation** vers la nappe phréatique (⑥), soit par **l'exportation des cultures** (⑦).

23. Evolution de l'état calcique

La teneur en calcium peut varier fortement d'un sol à l'autre. Pour un sol donné elle a naturellement tendance à diminuer, sous l'influence de 5 phénomènes :

- ➤ la **décarbonatation** ou décalcarification ③
- ightharpoonup la décalcification (correspond à la désorption (= départ) des ions Ca^{2+} du complexe en échange avec d'autres cations de la solution du sol tels que K^+ , Mg^{2+} , Na^+ ... Ce processus précède l'acidification.
- ➤ <u>l'acidification</u> correspond au remplacement des ions Ca²⁺ du complexe par des protons H⁺ (responsables de l'acidité)
- ➤ <u>le lessivage ou **lixiviation**</u> du calcium (⑤) intervient lorsqu'il y a drainage c'est-à-dire lorsque la pluviométrie est supérieure à l'évapotranspiration. Les pertes de calcium par lessivage peuvent atteindre 400 à 900 kg de CaCO₃/ha/an.

\triangleright <u>les exportations des cultures</u> (\bigcirc)

Tableau: Exportations en calcium par les cultures

Cultures	Exportations en Ca ²⁺ (kg/ha)
Céréales, pailles enlevées	35
Céréales, pailles enfouies	5
Maïs ensilage	40
Maïs grain	5
Betteraves sucrières	40
Luzerne	350
Colza (grain seul)	20

Conséquence de ces différents mécanismes sur l'évolution de l'état calcique : La plupart des sols cultivés ont tendance à s'acidifier, les ions Ca²⁺ étant progressivement remplacés par des ions H⁺. C'est la raison pour laquelle il est nécessaire de combattre cette acidification par les amendements basiques.

Remarque:

Les engrais exercent aussi un effet sur l'état calcique des sols, en libérant des ions à comportement neutre, acide ou basique.

Exemples:

- les engrais ammoniacaux et les superphosphates sont acidifiants,
- les engrais potassiques sont décalcifiants,
- les scories sont basifiantes.

Source : cours Laurent DUHAL -INFOMA

Page 3